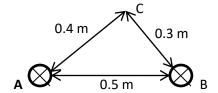

Electricity and Magnetism assignment

- 1(a) State Coulomb's law of electrostatics.
- (b) The figure below shows a simple model of a water molecule. In the model oxygen molecule acts as a point negative charge magnitude 1.1×10^{-19} C and hydrogen molecule as a point positive charge magnitude 0.55×10^{-19} C. The separation between the oxygen atom and hydrogen atom is 1.0×10^{-10} m.



Find

- (i) Magnitude of the force exerted on oxygen atom by a hydrogen atom
- (ii) Net force on the oxygen atom
- 2(a) Explain in terms of motion of free electrons what happens when an electric current flows through a metallic conductor.
- (b)(i) State Kirchhoff's circuit laws.
 - (ii) Find the current through R_2 in the circuit below if $E_1=6\,V$, $E_2=2\,V$, $R_1=10\,\Omega$, $R_2=5\,\Omega$ and $R_3=2\,\Omega$.

- 3(a) Define magnetic flux density
- (b)(i) Find the expression for the magnetic flux density B at a point r from an infinitely long straight wire carrying current I.
 - (ii) A and B are parallel straight wires each carrying current I into the plane of the page. Find the magnetic flux at C

